This issue of Explore underscores the University of Florida’s leadership role in research on water issues that are so vital to our state. Researchers in a wide range of disciplines contribute to our understanding of the complex systems represented by aquifers, lakes, rivers and estuaries. One of those disciplines is economics. UF’s Public Utility Research Center, or PURC, has devoted more than 30 years to studying infrastructure policy in Florida and around the world. PURC contributes to the policy conversation through events like last spring’s statewide conference, “How Should Florida’s Water Supply Be Managed in Response to Growth?” That event, co-sponsored by PURC and UF’s Askew Institute, brought together policymakers and opinion leaders from throughout the state to discuss water management.

During that conference, several participants and I emphasized that water is not free; it has real costs. Economics insists that we understand what we are giving up when we make choices, whether it’s watering our lawns or filling our swimming pools.

Economists understand the importance of sending people price signals that provide them with incentives to conserve. From this perspective, water is a commodity with values in alternative uses, including future consumption and environmental restoration. Experiences in other countries can help us understand the impacts of different policies on water systems. Recent research at PURC has focused on evaluating the performance of water utilities in a number of countries, including the United Kingdom, Uganda, Brazil and Peru. These studies yield insights into ways we can learn from others about innovative approaches to the efficient management of water resources and the delivery of water services to meet diverse needs. How can we develop models whose accuracy makes them useful to decision makers? Ultimately, our policy decisions will reflect our values regarding water stewardship.

Sophisticated modeling is essential if we are to establish solid, science-based policy. Science can tell us past trends, establish baselines and facilitate the analysis of alternative scenarios. Engineers look to technology for solutions to water scarcity problems. Hydrologists seek a greater understanding of the impacts of water usage and wetlands on water levels and flows within watersheds. Environmental scientists address ecosystem sustainability. Planners deal with land use, population growth projections and zoning issues. Political scientists focus on issues of power, legitimacy, social cohesion and the roles of different stakeholder groups. Legal scholars emphasize procedural fairness and how due process and transparency contribute to the legitimacy of outcomes. Despite the contributions from all of these disciplines, our models are still incomplete. It’s said that all models are wrong, but some models are useful. Water policy decisions are always made on the basis of incomplete information. We strive to develop models whose accuracy makes them useful to decision makers. Ultimately, our policy decisions will reflect our values regarding water stewardship.

Economists understand the importance of sending people price signals that provide them with incentives to conserve. From this perspective, water is a commodity with values in alternative uses, including future consumption and environmental restoration. Experiences in other countries can help us understand the impacts of different policies on water systems. Recent research at PURC has focused on evaluating the performance of water utilities in a number of countries, including the United Kingdom, Uganda, Brazil and Peru. These studies yield insights into ways we can learn from others about innovative approaches to the efficient management of water resources and the delivery of water services to meet diverse needs.

Economists in the UF College of Business and in the Institute of Food and Agricultural Sciences rely on data from colleagues in hydrology, demography, geography and other disciplines to develop models that provide frameworks for capturing complexity, understanding patterns and predicting outcomes. Sophisticated modeling is essential if we are to establish solid, science-based policy. Science can tell us past trends, establish baselines and facilitate the analysis of alternative scenarios. Engineers look to technology for solutions to water scarcity problems. Hydrologists seek a greater understanding of the impacts of water usage and wetlands on water levels and flows within watersheds. Environmental scientists address ecosystem sustainability. Planners deal with land use, population growth projections and zoning issues. Political scientists focus on issues of power, legitimacy, social cohesion and the roles of different stakeholder groups. Legal scholars emphasize procedural fairness and how due process and transparency contribute to the legitimacy of outcomes. Despite the contributions from all of these disciplines, our models are still incomplete. It’s said that all models are wrong, but some models are useful. Water policy decisions are always made on the basis of incomplete information. We strive to develop models whose accuracy makes them useful to decision makers. Ultimately, our policy decisions will reflect our values regarding water stewardship.

Economists understand the importance of sending people price signals that provide them with incentives to conserve. From this perspective, water is a commodity with values in alternative uses, including future consumption and environmental restoration. Experiences in other countries can help us understand the impacts of different policies on water systems. Recent research at PURC has focused on evaluating the performance of water utilities in a number of countries, including the United Kingdom, Uganda, Brazil and Peru. These studies yield insights into ways we can learn from others about innovative approaches to the efficient management of water resources and the delivery of water services to meet diverse needs.

Economists in the UF College of Business and in the Institute of Food and Agricultural Sciences rely on data from colleagues in hydrology, demography, geography and other disciplines to develop models that provide frameworks for capturing complexity, understanding patterns and predicting outcomes. Sophisticated modeling is essential if we are to establish solid, science-based policy. Science can tell us past trends, establish baselines and facilitate the analysis of alternative scenarios. Engineers look to technology for solutions to water scarcity problems. Hydrologists seek a greater understanding of the impacts of water usage and wetlands on water levels and flows within watersheds. Environmental scientists address ecosystem sustainability. Planners deal with land use, population growth projections and zoning issues. Political scientists focus on issues of power, legitimacy, social cohesion and the roles of different stakeholder groups. Legal scholars emphasize procedural fairness and how due process and transparency contribute to the legitimacy of outcomes. Despite the contributions from all of these disciplines, our models are still incomplete. It’s said that all models are wrong, but some models are useful. Water policy decisions are always made on the basis of incomplete information. We strive to develop models whose accuracy makes them useful to decision makers. Ultimately, our policy decisions will reflect our values regarding water stewardship.

Economists understand the importance of sending people price signals that provide them with incentives to conserve. From this perspective, water is a commodity with values in alternative uses, including future consumption and environmental restoration. Experiences in other countries can help us understand the impacts of different policies on water systems. Recent research at PURC has focused on evaluating the performance of water utilities in a number of countries, including the United Kingdom, Uganda, Brazil and Peru. These studies yield insights into ways we can learn from others about innovative approaches to the efficient management of water resources and the delivery of water services to meet diverse needs.

Economists in the UF College of Business and in the Institute of Food and Agricultural Sciences rely on data from colleagues in hydrology, demography, geography and other disciplines to develop models that provide frameworks for capturing complexity, understanding patterns and predicting outcomes. Sophisticated modeling is essential if we are to establish solid, science-based policy. Science can tell us past trends, establish baselines and facilitate the analysis of alternative scenarios. Engineers look to technology for solutions to water scarcity problems. Hydrologists seek a greater understanding of the impacts of water usage and wetlands on water levels and flows within watersheds. Environmental scientists address ecosystem sustainability. Planners deal with land use, population growth projections and zoning issues. Political scientists focus on issues of power, legitimacy, social cohesion and the roles of different stakeholder groups. Legal scholars emphasize procedural fairness and how due process and transparency contribute to the legitimacy of outcomes. Despite the contributions from all of these disciplines, our models are still incomplete. It’s said that all models are wrong, but some models are useful. Water policy decisions are always made on the basis of incomplete information. We strive to develop models whose accuracy makes them useful to decision makers. Ultimately, our policy decisions will reflect our values regarding water stewardship.

Economists understand the importance of sending people price signals that provide them with incentives to conserve. From this perspective, water is a commodity with values in alternative uses, including future consumption and environmental restoration. Experiences in other countries can help us understand the impacts of different policies on water systems. Recent research at PURC has focused on evaluating the performance of water utilities in a number of countries, including the United Kingdom, Uganda, Brazil and Peru. These studies yield insights into ways we can learn from others about innovative approaches to the efficient management of water resources and the delivery of water services to meet diverse needs.

Economists in the UF College of Business and in the Institute of Food and Agricultural Sciences rely on data from colleagues in hydrology, demography, geography and other disciplines to develop models that provide frameworks for capturing complexity, understanding patterns and predicting outcomes. Sophisticated modeling is essential if we are to establish solid, science-based policy. Science can tell us past trends, establish baselines and facilitate the analysis of alternative scenarios. Engineers look to technology for solutions to water scarcity problems. Hydrologists seek a greater understanding of the impacts of water usage and wetlands on water levels and flows within watersheds. Environmental scientists address ecosystem sustainability. Planners deal with land use, population growth projections and zoning issues. Political scientists focus on issues of power, legitimacy, social cohesion and the roles of different stakeholder groups. Legal scholars emphasize procedural fairness and how due process and transparency contribute to the legitimacy of outcomes. Despite the contributions from all of these disciplines, our models are still incomplete. It’s said that all models are wrong, but some models are useful. Water policy decisions are always made on the basis of incomplete information. We strive to develop models whose accuracy makes them useful to decision makers. Ultimately, our policy decisions will reflect our values regarding water stewardship.

Economists understand the importance of sending people price signals that provide them with incentives to conserve. From this perspective, water is a commodity with values in alternative uses, including future consumption and environmental restoration. Experiences in other countries can help us understand the impacts of different policies on water systems. Recent research at PURC has focused on evaluating the performance of water utilities in a number of countries, including the United Kingdom, Uganda, Brazil and Peru. These studies yield insights into ways we can learn from others about innovative approaches to the efficient management of water resources and the delivery of water services to meet diverse needs.

Economists in the UF College of Business and in the Institute of Food and Agricultural Sciences rely on data from colleagues in hydrology, demography, geography and other disciplines to develop models that provide frameworks for capturing complexity, understanding patterns and predicting outcomes. Sophisticated modeling is essential if we are to establish solid, science-based policy. Science can tell us past trends, establish baselines and facilitate the analysis of alternative scenarios. Engineers look to technology for solutions to water scarcity problems. Hydrologists seek a greater understanding of the impacts of water usage and wetlands on water levels and flows within watersheds. Environmental scientists address ecosystem sustainability. Planners deal with land use, population growth projections and zoning issues. Political scientists focus on issues of power, legitimacy, social cohesion and the roles of different stakeholder groups. Legal scholars emphasize procedural fairness and how due process and transparency contribute to the legitimacy of outcomes. Despite the contributions from all of these disciplines, our models are still incomplete. It’s said that all models are wrong, but some models are useful. Water policy decisions are always made on the basis of incomplete information. We strive to develop models whose accuracy makes them useful to decision makers. Ultimately, our policy decisions will reflect our values regarding water stewardship.

Economists understand the importance of sending people price signals that provide them with incentives to conserve. From this perspective, water is a commodity with values in alternative uses, including future consumption and environmental restoration. Experiences in other countries can help us understand the impacts of different policies on water systems. Recent research at PURC has focused on evaluating the performance of water utilities in a number of countries, including the United Kingdom, Uganda, Brazil and Peru. These studies yield insights into ways we can learn from others about innovative approaches to the efficient management of water resources and the delivery of water services to meet diverse needs.