IV. Network and Route Design

Public Transport Planning and Regulation: An Introduction
Planning and Analysis Building Blocks

Schedule Building

- Performance Analysis
 - Measures & Standards
 - Network and Route Design
 - Market Factors and Demand Analysis
 - Cost Analysis and Financial Planning
 - Service Monitoring and Data Collection
 - Terminology and Basic Relationships

Focus of Discussion

- Fares and Revenue: Policy, Analysis, and Collection
- Network and Route Design
- Measurables and Demand Analysis
Network and Route Design

• Public transport services tend to evolve over time as cities grow and markets change
 – Usually, they have not been planned as an integrated network
• Complex travel patterns require that individual routes be designed to form an integrated network
• Individual routes should be designed to serve specific markets
Network Structures

- Radial
- Grid
- Hierarchical
 - Trunk-Feeder
Radial Network

Traditional structure focused on a single dominant activity center
Grid Network

Provides direct access to many destinations with no more than one transfer
Hierarchical “Trunk-Feeder”

• Different types of routes perform different functions
 – Feeder: Collection/distribution (e.g., barrios)
 – Trunk: Long distance, major destinations (e.g., City Center)

• Generally, higher service frequencies and larger vehicles on trunk routes
Trunk-Feeder Schedule Coordination

- Easy for *Feeder-to-Trunk* movement since trunk frequencies are typically higher than feeder frequencies

- Difficult for *Trunk-to-Feeder* movement since trunk users may just miss a lower-frequency feeder bus
 - Very reliable trunk service may help since users can plan their trunk trip to meet the feeder departure
Feeder Route Crowding

• Not an issue for Feeder-to-Trunk movements
 – Easier to schedule adequate feeder capacity

• Difficult issue for Trunk-to-Feeder since large trunk loads may arrive and exceed feeder (and possibly terminal) capacity
 – Important to monitor trip-by-trip loadings and design appropriate service (e.g., irregular intervals, doubleheader buses)
 – Real-time dispatching and adjustments can address immediate problems
Feeder Route Design

• Linear routes are preferable to loop routes

• One-way loop routes require users to travel more than halfway around the loop either going to or coming from terminal

• Short loops minimize this problem
Setting Feeder Intervals

• Setting feeder intervals based on demand may result in inconvenient service
 – Inconsistent with user needs
 – Long waits

• Minimum policy intervals may be needed to provide convenient service

• Policy intervals may result in low productivity feeder routes

• Important to view the trunk and feeder routes as one product
Types of Routes

• Local
 – Partial Service
 – Branching
• Limited Stop
• Express
Local Service

• Approach
 – Service provided to each designated stop on route
 – All trips operate entire length of route

<table>
<thead>
<tr>
<th>Suburb</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM</td>
<td>7:10 AM</td>
<td>7:18 AM</td>
<td>7:26 AM</td>
<td>7:35 AM</td>
<td>7:45 AM</td>
<td>7:53 AM</td>
</tr>
<tr>
<td>7:10 AM</td>
<td>7:20 AM</td>
<td>7:28 AM</td>
<td>7:36 AM</td>
<td>7:45 AM</td>
<td>7:55 AM</td>
<td>8:03 AM</td>
</tr>
<tr>
<td>7:20 AM</td>
<td>7:30 AM</td>
<td>7:38 AM</td>
<td>7:46 AM</td>
<td>7:55 AM</td>
<td>8:05 AM</td>
<td>8:13 AM</td>
</tr>
<tr>
<td>7:30 AM</td>
<td>7:40 AM</td>
<td>7:48 AM</td>
<td>7:56 AM</td>
<td>8:05 AM</td>
<td>8:15 AM</td>
<td>8:23 AM</td>
</tr>
<tr>
<td>7:40 AM</td>
<td>7:50 AM</td>
<td>7:58 AM</td>
<td>8:06 AM</td>
<td>8:15 AM</td>
<td>8:25 AM</td>
<td>8:33 AM</td>
</tr>
</tbody>
</table>
Importance of Designated Stops

• User
 – Communicates passenger information on availability of service
 – Can provide passenger information on routes/schedules
 – Can provide passenger amenities (e.g., shelters, lighting)
 – Facilitates passenger interchanges

• Operator
 – By combining loading points, operating speed increases

• General Public
 – Improves traffic safety (buses, cars, pedestrians)
 – Improves traffic flow
 – Facilitates service monitoring and data collection
Partial Service

- **Approach**
 - Service provided to each stop on route
 - Only some trips operate entire length of route

<table>
<thead>
<tr>
<th>Suburb</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM</td>
<td>7:10 AM</td>
<td>7:18 AM</td>
<td>7:26 AM</td>
<td>7:35 AM</td>
<td>7:45 AM</td>
<td>7:53 AM</td>
</tr>
<tr>
<td>7:15 AM</td>
<td>7:25 AM</td>
<td>7:33 AM</td>
<td>7:41 AM</td>
<td>7:50 AM</td>
<td>8:00 AM</td>
<td>8:08 AM</td>
</tr>
<tr>
<td>7:30 AM</td>
<td>7:40 AM</td>
<td>7:48 AM</td>
<td>7:56 AM</td>
<td>8:05 AM</td>
<td>8:15 AM</td>
<td>8:23 AM</td>
</tr>
</tbody>
</table>
Load Profile Data Essential for Effective Design

![Bar Graph]

- **Electronic City**: 20
- **Kudlu Gate**: 60
- **Madiwala**: 120
- **Maharanis College**: 100
- **City Market**: 40

Maximum Load

- **Passengers Onboard Leaving Stop**
- **Stops**: Electronic City, Kudlu Gate, Madiwala, Maharanis College, City Market
Partial Service

• Advantage: Match supply and demand

• Disadvantage: Passenger confusion on outbound trips (e.g., to Suburb)
Local Service: Route Branching

• Approach
 – Service provided to each stop along the route “trunk”
 – Trips alternate to the outer “branches”

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>City Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM</td>
<td>7:00 AM</td>
<td>7:20 AM</td>
<td>7:29 AM</td>
<td>7:39 AM</td>
<td>7:47 AM</td>
<td></td>
</tr>
<tr>
<td>7:05 AM</td>
<td>7:05 AM</td>
<td>7:25 AM</td>
<td>7:34 AM</td>
<td>7:44 AM</td>
<td>7:52 AM</td>
<td></td>
</tr>
<tr>
<td>7:10 AM</td>
<td>7:10 AM</td>
<td>7:30 AM</td>
<td>7:39 AM</td>
<td>7:49 AM</td>
<td>7:57 AM</td>
<td></td>
</tr>
<tr>
<td>7:15 AM</td>
<td>7:15 AM</td>
<td>7:35 AM</td>
<td>7:44 AM</td>
<td>7:54 AM</td>
<td>8:02 AM</td>
<td></td>
</tr>
<tr>
<td>7:20 AM</td>
<td>7:20 AM</td>
<td>7:40 AM</td>
<td>7:49 AM</td>
<td>7:59 AM</td>
<td>8:07 AM</td>
<td></td>
</tr>
<tr>
<td>7:25 AM</td>
<td>7:25 AM</td>
<td>7:45 AM</td>
<td>7:54 AM</td>
<td>8:04 AM</td>
<td>8:12 AM</td>
<td></td>
</tr>
</tbody>
</table>
Reasons for Route Branching

- Consolidate two “weak” routes
- Provide service to new origins or destinations
Load Profile Data Essential for Designing Effective Branches

• Must insure that there is sufficient vehicle capacity to serve passenger demand on:
 – Each branch
 – The trunk

Maximum Passenger Load Branch A
Maximum Passenger Load Trunk
Maximum Passenger Load Branch B
Route Branching

• Advantage
 – Match supply and demand

• Disadvantage
 – Passenger confusion on outbound trips to a branch (e.g., to A)
 – Possible “bunching” on trunk

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>City Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM</td>
<td>7:20 AM</td>
<td>7:29 AM</td>
<td>7:39 AM</td>
<td>7:47 AM</td>
<td></td>
</tr>
<tr>
<td>7:05 AM</td>
<td>7:25 AM</td>
<td>7:34 AM</td>
<td>7:44 AM</td>
<td>7:52 AM</td>
<td></td>
</tr>
<tr>
<td>7:10 AM</td>
<td>7:30 AM</td>
<td>7:39 AM</td>
<td>7:49 AM</td>
<td>7:57 AM</td>
<td></td>
</tr>
<tr>
<td>7:15 AM</td>
<td>7:35 AM</td>
<td>7:44 AM</td>
<td>7:54 AM</td>
<td>8:02 AM</td>
<td></td>
</tr>
<tr>
<td>7:20 AM</td>
<td>7:40 AM</td>
<td>7:49 AM</td>
<td>7:59 AM</td>
<td>8:07 AM</td>
<td></td>
</tr>
<tr>
<td>7:25 AM</td>
<td>7:45 AM</td>
<td>7:54 AM</td>
<td>8:04 AM</td>
<td>8:12 AM</td>
<td></td>
</tr>
</tbody>
</table>
Making Branches Less Confusing?

• “Label each branch a separate route”

• Disadvantage: Makes it difficult to provide information to passengers with origins and destinations on the trunk
 (e.g., Bangalore has over 1,700 routes)
Limited Service

• **Approach**
 – Service provided to selected stops on route
 • High passenger boardings and alightings
 – All trips operate entire length of route
 – Usually supplements local service

<table>
<thead>
<tr>
<th>Electronic City</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>City Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM</td>
<td></td>
<td></td>
<td></td>
<td>7:29 AM</td>
<td></td>
<td>7:45 AM</td>
</tr>
<tr>
<td>7:15 AM</td>
<td></td>
<td></td>
<td></td>
<td>7:44 AM</td>
<td></td>
<td>8:00 AM</td>
</tr>
<tr>
<td>7:30 AM</td>
<td></td>
<td></td>
<td></td>
<td>7:59 AM</td>
<td></td>
<td>8:15 AM</td>
</tr>
<tr>
<td>7:45 AM</td>
<td></td>
<td></td>
<td></td>
<td>8:14 AM</td>
<td></td>
<td>8:30 AM</td>
</tr>
<tr>
<td>8:00 AM</td>
<td></td>
<td></td>
<td></td>
<td>8:29 AM</td>
<td></td>
<td>8:45 AM</td>
</tr>
</tbody>
</table>
Origin-Destination Data Essential for Designing Limited Service

- Boarding and alighting data may not be sufficient!
Limited Service

- Advantages
 - Improved passenger speed
 - Increased operator efficiency
 - Frees up space on local buses and at stops

- Disadvantage
 - Passenger confusion
 - Catching correct bus inbound and outbound
Express Service

• **Approach**
 - Non-stop service provided between stop(s) in outer area and stop(s) in central city or key destination
 - All trips operate entire length of route
 - Usually supplements local service

<table>
<thead>
<tr>
<th>Electronic City</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>City Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7:40 AM</td>
</tr>
<tr>
<td>7:20 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8:00 AM</td>
</tr>
<tr>
<td>7:40 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8:20 AM</td>
</tr>
<tr>
<td>8:00 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8:40 AM</td>
</tr>
<tr>
<td>8:20 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9:00 AM</td>
</tr>
</tbody>
</table>

Origin-Destination Data Essential for Designing Express Service

• Boarding and alighting data may not be sufficient
Express Service

• Advantages
 – Improved passenger speed
 – Increased operator efficiency
 • Frees up space on local buses and at stops

• Disadvantage
 – Passenger confusion
 • Catching correct bus inbound and outbound
 – Possible decreased operator efficiency
 • No passenger turnover, may only get one bus trip per peak period
Keep in Mind

• From passenger perspective, *simplicity is a virtue!*
 – No more than 4 distinct services at any stop other than major passenger interchanges or destinations
 – Unique numbering of route variations (e.g., local, limited, express) may still cause passenger confusion

• From an operator perspective, too many routes at a stop may cause delays (buses waiting) and increase costs
Summary

• Described a wide range of service types

• *Remember*, good planning requires:
 – Consideration of a variety of service types—there is no one *magic solution*
 – Good demand data on origin-destination flows