V. Fares and Revenue: Policy, Analysis and Collection

Public Transport
Planning and Regulation:
An Introduction
Planning and Analysis Building Blocks

<table>
<thead>
<tr>
<th>Schedule Building</th>
<th>Cost Analysis and Financial Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Analysis</td>
<td></td>
</tr>
<tr>
<td>Measures & Standards</td>
<td>Service Monitoring and Data Collection</td>
</tr>
<tr>
<td>Network and Route</td>
<td>Focus of Discussion</td>
</tr>
<tr>
<td>Market Factors and Demand Analysis</td>
<td>Fares and Revenue: Policy, Analysis, and Collection</td>
</tr>
<tr>
<td></td>
<td>Terminology and Basic Relationships</td>
</tr>
</tbody>
</table>
How Should Fares Be Set?

• Based on public policy
 – Financial sustainability
 – Equity
 – Social and environmental functions of public transport

• Reflect quantitative analysis
Affordability Index

<table>
<thead>
<tr>
<th>Measure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus Fares for 60 Monthly Trips as a Percent of Average Per Capita Income for the Poorest 20 Percent (Quintile) of Population</td>
<td></td>
</tr>
</tbody>
</table>

| Standard | Maximum of 10% |

World Bank Technical Paper 68 *Bus Services: Raising Standards and Lowering Costs*
World Bank Transport Papers TP-3 *Affordability of Public Transport in Developing Countries*
Public Policy Alternatives

• Market-based fares with no government oversight
• Cost-based fares with reasonable profit and government oversight
• Publicly-subsidized fares to meet social and other objectives
 – All riders
 – Targeted, e.g., disabled, students
Fare Considerations

• Fare Revenue Requirements
 – How much of costs should users cover?

• Fare Structure and Levels
 – How much should user charges be?

• Fare Collection
 – How can users pay for their trips?

• Fare Integration
 – How should fares be paid for trips involving transfers?
Subsidies

- Why?
- How?
- Issues
Why Subsidies?

• **Affordability**
 - Provide mobility for all regardless income
 - All US, EU, and Chinese, some Indian cities)

• **Managing externalities**
 - Congestion (e.g., London)
 - Pollution (e.g., Beijing)
 - Economic, social development (e.g., Accra, Ghana)
 - Sustainable land use (e.g., Toronto)
How to Provide Subsidies?

• Cross subsidization within enterprise
 – Across routes (Bangalore)
 – Across types of service (TransMilenio)
 – From PT related activities (Hong Kong)
 – From other business activities (Mumbai)

• Public payments to operators
 – Line item in government budget (Argentina)
 – Dedicated sources of funds (France, US)

• Direct payments to users
 – Employer (Brazil, US, Canada)
 – Social agencies (US)
Policy Issues

• Leakage
 – Wrong people get subsidized

• Incentives for operators
 – Positive: Can use conditional subsidies to promote efficiency and effectiveness (US)
 – Negative: Can promote inefficiency (China)

• Financial sustainability and reliability
 – Can government continue to make payments as costs grow? (An issue in most places)
Basic Fare Structures

• **Flat Fare**
 – The same fare is charged for all trips regardless of distance or service quality (New York, Paris)

• **Distance-Based**
 – Higher fares are charged for longer distances (India, Washington)

• **Service Quality-Based**
 – Higher fares are charged for higher quality service (Seoul, Korea)
Time-of-Day Fares

• **Approach:**
 – Charge higher fares in peak periods than in off-peak periods

• **Two objectives**
 – Shift peak users to off-peak periods to reduce peak demands and better use off-peak capacity
 – Increase off-peak riding by offering lower fares
 – Examples: London, Washington
Fare Collection

- What media?
- Who sells?
- When sold?
- Effects on service and operations?
Fare Media

- Cash
- Tickets/tokens
- Stored value cards
 - Time (pass)
 - Trips (punch, tear-off)
 - Money
- "Smart“/Integrated circuit cards
 - Public transport only
 - General purpose (Singapore)
Sales and Collection

• Media Sales Options
 – Driver/conductor/station agent
 – Third party (e.g., shop, kiosk)
 – Automated (e.g., vending machine, Internet)
 – User “convenience” dictates broad availability

• Collection Options
 – Driver/conductor/station agent
 – Contractor hired by government
 – Automated (e.g., station and/or vehicle turnstiles)
 – Proof-of-Payment
Payment Time Frames

- **Prepayment**
 - Operator receives payment before service provided
 - Best “cash flow” option for operator

- **Time-of-service**

- **Post Payment**
 - Operator receives payment after service provided
 - Common for concessionary fare compensation
 - Worst “cash flow” option for operator
Fare Payment Affects Boarding and Travel Times

• Ways to Speed Fare Payment
 – Encourage use of prepaid media
 • Tickets, tokens, passes, smart cards
 – Implement off-vehicle fare payment
 • Enclosed area for waiting passengers who have paid
 • Proof-of-payment plan
 – Change passenger exiting
 • Encourage exiting by rear (non-paying) door
 • Use double-flow doors
Fare Integration

- Important to riders who must use more than one route (transfer) to complete their trips

User Perspective
- Price
- Psychology
- Understandability
- Convenience

Operator Perspective
- Fares paid in proportion to cost of service
- Administrative effort and costs
- Fare evasion and shrinkage
Should There Be a Discount?

• A balance of views
 – Trips requiring more than one leg are longer and thus should cost more
 – No “double fare” penalty for transfers since riders that must make then receive poorer service

• Most public transport systems moving to free or discounted transfers, at least for some locations and interchanges
 • New York: Metro-metro, bus-metro
 • Paris: Bus-bus, Bus-Tram, RER-Metro within City of Paris
Institutional Arrangements: Multiple Operators

• Sharing fare revenues
 – Issue when there are discounts
 – Allocation agreement needed

• Audit and control
 – Insure proper fares charged and collected
 – Insure fare revenues accurately reported

• Fare collection mechanisms
 – Most places moving to common electronic ticketing and collection
Facilitating Integration: Technology

- Inexpensive IC cards
 - Can provide for nominal charge or free
- GPS/automatic passenger counters
 - Yield planning data and enhance revenue/cost management
- Inexpensive handheld ticketing machines and IC card data terminals
 - Facilitate on-board collection
Fare Integration Examples

- Singapore
- Hong Kong
- Paris
- London
Singapore: EZ-Link Card

- Introduced in 2002
- 100% owned by public authority
- Administered by MasterCard
- Used for all PT public and private operators
- Features:
 - Multipurpose smartcard
 - Can be used in shops, restaurants, schools, recreational places, government agencies, health services, and kiosks
- Intermodal fare rebates (8% average)
- >95% fare transactions are through EZ-Link cards
Hong Kong: Octopus

• Introduced in 1997
• Joint venture of the major 6 operators
• Access includes taxis, ferries, and car-parks
• Features:
 – Multipurpose smartcard
 – Can be used in shops, restaurants, recreational places, and telephones
• Intermodal transfer discounts
• >95% of population use it.
• More than 11 m daily transactions, totaling > US$ 10.1 million!!!
Paris: Navigo

- Introduced in 2001
- 100% owned by a public joint venture
- Can be used for all PT modes, including rental bicycles
- On, off board payment
- No fare discounts for bulk purchases
- 16% of all fare transactions in Paris Region use Navigo cards
London: Oyster

• Introduced in 2002
• 17-year contract with private joint venture
• Can be used for all PT modes
• Features:
 – Some discounts on shops, museums, restaurants...
• Up to 60% fare discount for bulk purchases compared to single cash fare
• Over 80% of all mode fare transactions use Oyster cards
Fare Analysis Considerations

- Explicit public subsidy policy (e.g., affordability)
- Characteristics of users and their travel
- Customer ability and willingness to pay
- Operation’s efficiency and effectiveness
- Full operating and capital costs
Quantitative Analysis

• Can analyze response to fare changes using quantitative methods (e.g., elasticities)
 – By type of user and type of trip
 – Impact on revenues

• Significant, documented experience with fare elasticities from all over the world
 – TRL (UK), TRB (US)

• Stated preference surveys to provide more input into the analysis
 – Survey: *What will you do if fare increased to $X?*

• “Affordability” analysis
Elasticity Models

Method

Elasticity is the ratio of the percent change in ridership to the percent change in a transit service parameter (e.g., fares, service levels)

Diagram:
- Riders vs. Fares
- \(R_{\text{Before}} \) and \(R_{\text{After}} \)
- \(F_{\text{Before}} \) and \(F_{\text{After}} \)
- Demand Curve
Transit Demand Is “Inelastic” with Respect to Fare

- Percentage change in demand less than percentage change in fares
- Most studies are from developed countries
 - Elasticities expected to apply to developing countries
- Mean value of fare $e = -0.40$
- Elasticities vary widely by market (type of customer, trip)
Transit Demand Is “Inelastic” with Respect to Fare

<table>
<thead>
<tr>
<th>Transit Mode</th>
<th>Bus</th>
<th>Rapid Rail</th>
<th>Rapid Rail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Period</td>
<td>Peak</td>
<td>Off-Peak</td>
<td></td>
</tr>
<tr>
<td>Trip Purpose</td>
<td>Work</td>
<td>School</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.19</td>
</tr>
</tbody>
</table>
Applying Elasticity Models

1. Select appropriate elasticity value
 - Historical experience in given city
 - Analogue “peer” experience
 - Given market (type of customer, trip)

2. Use selected elasticity value and the proposed change (e.g., increased fare, reduced service) to estimate future ridership
Arc Elasticity Formula

\[
e = \frac{(R_{\text{After}} - R_{\text{Before}})}{2} \frac{2}{(F_{\text{After}} - F_{\text{Before}})}
\]

- \(R_{\text{Before}} \) = Ridership before fare change
- \(R_{\text{After}} \) = Ridership after fare change
- \(F_{\text{Before}} \) = Fare before fare change
- \(F_{\text{After}} \) = Fare after fare change
Example of Elasticity, Ridership, and Revenue

Problem
ABC Transport has a fare of $1.00 and carries 1,000 passengers. What is the impact of raising the fare to $1.20?

Solution

<table>
<thead>
<tr>
<th>e</th>
<th>Riders</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>964</td>
<td>$1,156,800</td>
</tr>
<tr>
<td>0.40</td>
<td>930</td>
<td>$1,116,000</td>
</tr>
<tr>
<td>0.60</td>
<td>897</td>
<td>$1,076,400</td>
</tr>
<tr>
<td>0.80</td>
<td>864</td>
<td>$1,036,800</td>
</tr>
<tr>
<td>1.00</td>
<td>833</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>1.20</td>
<td>803</td>
<td>$963,600</td>
</tr>
<tr>
<td>1.40</td>
<td>774</td>
<td>$928,800</td>
</tr>
<tr>
<td>1.60</td>
<td>746</td>
<td>$895,200</td>
</tr>
<tr>
<td>1.80</td>
<td>719</td>
<td>$862,800</td>
</tr>
</tbody>
</table>

“Average” Transport

Inelastic

Elastic
Elasticity Resources

and/or

The Demand for Public Transport, A Practical Guide
TRL Report 593
R. Balcombe, et al; Transport Research Laboratory, UK, 2004
Which Fare Approach is Best?

One that yields the required revenue and balances:

- Equity
- Customer Understanding
- Administrative Ease
- Impact on operations, especially speed
- Revenue Security
Summary

• Described fare planning issues and design elements

• Design of a fare structure, payment/collection approach is a “balancing act” that involves many considerations

Simplicity is a virtue!
Charlie on the MTA: Boston Mayorality Election Campaign
Song RE High and Complex Public Transport Fares

1. Let me tell you the story
 Of a man named Charlie
 On a tragic and fateful day
 He put ten cents in his pocket,
 Kissed his wife and family
 Went to ride on the MTA

2. Charlie handed in his dime
 At the Kendall Square Station
 And he changed for Jamaica Plain
 When he got there the conductor told him,
 "One more nickel."
 Charlie could not get off that train.

3. Now all night long
 Charlie rides through the tunnels
 Saying, "What will become of me?
 Crying
 How can I afford to see
 My sister in Chelsea
 Or my cousin in Roxbury?"

4. Charlie's wife goes down
 To the Scollay Square station
 Every day at quarter past two
 And through the open window
 She hands Charlie a sandwich
 As the train comes rumblin' through.

5. As his train rolled on
 underneath Greater Boston
 Charlie looked around and sighed:
 "Well, I'm sore and disgusted
 And I'm absolutely busted;
 I guess this is my last long ride."

6. Now all you citizens of Boston,
 Don't you think it's a scandal
 That the people have to pay and pay
 Vote for Walter A. O'Brien

Chorus:
Did he ever return,
No he never returned, and his fate is still unlearn'd
He may ride forever 'neath the streets of Boston
He's the man who never returned.
Kingston Trio Rendition (UTUBE)

http://www.youtube.com/watch?v=ujufZnN_uho