Storm Season 2004-2005
7 Storms / 15 Months

2004 Season

<table>
<thead>
<tr>
<th>Event</th>
<th>Affected Customers</th>
<th>Days to Restore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charley</td>
<td>874,000</td>
<td>13%</td>
</tr>
<tr>
<td>Frances</td>
<td>2,786,300</td>
<td>12</td>
</tr>
<tr>
<td>Jeanne</td>
<td>1,737,400</td>
<td>8</td>
</tr>
<tr>
<td>Dennis</td>
<td>508,800</td>
<td>3</td>
</tr>
<tr>
<td>Katrina</td>
<td>1,453,000</td>
<td>8</td>
</tr>
<tr>
<td>Rita</td>
<td>140,000</td>
<td>2</td>
</tr>
<tr>
<td>Wilma</td>
<td>3,241,437</td>
<td>18</td>
</tr>
</tbody>
</table>

2005 Season

- Hurricane force winds
- Tropical storm force winds
Florida Power & Light
2004 - 2005 Record Breaking Storm Seasons

• 2004 was unprecedented
 – 3 back-to-back storms within 36 days
 – Nearly 47,000 workers from 39 states and Canada
 – 75% restored by third day after each storm

• 2005 is most active and destructive season on record
 – 4 hurricanes affected customers
 – Prepared for 7
 – Nearly 45,500 workers from 36 states and Canada
 – 130 days of storm restoration

• Wilma alone had the largest impact to our infrastructure
 – Largest amount of resources ever acquired
 – Quickest deployment of resources to the field after a major hurricane
2005 Storm Season - Distribution and Transmission Equipment Repaired

• Distribution
 – 12,632 poles (FPL & non-FPL)
 – 930 miles of OH conductor
 – 570 miles of OH service conductor
 – 1.1 million OH splices
 – 30 miles of UG cable
 – 100 miles of UG service cable

• Transmission / Substation
 – 100 structures
 – 7 miles of conductor
 – 1 substation transformers
 – 7 regulators
 – 16 breakers
2005 Storm Season Assessment

Forensic Team

- Samples taken to determine and analyze cause of failures on equipment during hurricanes
 - 2,571 observations
 - Observations focused on pole location to capture causes
2005 Storm Season Assessment

KEMA

• Retained independent outside consultant (KEMA):
 - Examine performance of FPL facilities
 - Understand whether transmission and distribution structures performed appropriately
 – Distribution Performance
 – Distribution Standards
 – Quality Processes
 – Pole Maintenance
 – Transmission Performance
 – Substation Performance
 – Weather Assessment
 – Industry Benchmark
2005 Storm Season Assessment

KEMA Findings

- FPL meets or exceeds all required standards
- All quality systems are good
- Performance during Wilma was as expected
- Damage during Wilma was consistent with past hurricanes
Five-Point Storm Secure Plan
A Hardening Roadmap

• Significant changes are required in the design, construction and operational of electric systems
 – Evidence of more active multi decade hurricane cycle
 – More heavily and densely populated areas
 – Customer expectations changed

• Development of the Storm Secure Plan for the future

Hardening “Roadmap”

5-10 Years

Now
Five-Point Storm Secure Plan
Strengthening the Grid

- Complete Post-Hurricane and Targeted Facility Upgrades
- Step-up Pole Inspections
- Harden the Electrical Network
- Invest in Underground Conversions
- Increase Line Clearing
Five-Point Storm Secure Plan
Distribution – Harden the Electrical System

- Adopt the NESC extreme wind velocity zone criteria as the new standard
- System upgrades of facilities through system expansion, relocations and major maintenance/rebuild projects
- Targeted, long term retrofit of existing facilities, that serve critical infrastructure facilities and major thoroughfares
Vegetation Management

- Accelerate Vegetation Management
 - Complete 75% before height of storm season
- Evaluate alternative trim cycles
 - Davies consulting retained to determine most cost effective trim cycle
- Promote Right Tree Right Place
2006 CIF Hardening Projects

• Facilities having a direct effect on public health, safety, welfare and security

• Two South Florida ports
 – Port Everglades
 – Port of Palm Beach

• Several South Florida hospitals
 – Jackson / UM Hospital Complex
 – Mt Sinai / Miami Heart
 – Saint Mary’s Medical Center

FPL supplies Port Everglades with electricity to distribute the petroleum that supplies nearly one-fifth of Florida’s energy requirements.
How You Can Help

- **Overhead Hardening**
 - Need better materials and/or work methods
- **Effects of Wind**
 - Need better wind data at a granular level
 - Sustained winds vs. choppy winds
 - Testing and wind simulations
- **Storm Surge**
 - Need better materials and/or work methods
 - Network operations
Questions ?